CO2 and H2O Coadsorption and Reaction on the Low-Index Surfaces of Tantalum Nitride: A First-Principles DFT-D3 Investigation

Author:

Dzade Nelson Y.ORCID

Abstract

A comprehensive mechanistic insight into the photocatalytic reduction of CO2 by H2O is indispensable for the development of highly efficient and robust photocatalysts for artificial photosynthesis. This work presents first-principles mechanistic insights into the adsorption and activation of CO2 in the absence and presence of H2O on the (001), (010), and (110) surfaces of tantalum nitride (Ta3N5), a photocatalysts of significant technological interest. The stability of the different Ta3N surfaces is shown to dictate the strength of adsorption and the extent of activation of CO2 and H2O species, which bind strongest to the least stable Ta3N5(001) surface and weakest to the most stable Ta3N5(110) surface. The adsorption of the CO2 on the Ta3N5(001), (010), and (110) surfaces is demonstrated to be characterized by charge transfer from surface species to the CO2 molecule, resulting in its activation (i.e., forming negatively charged bent CO2−δ species, with elongated C–O bonds confirmed via vibrational frequency analyses). Compared to direct CO2 dissociation, H2O dissociates spontaneously on the Ta3N5 surfaces, providing the necessary hydrogen source for CO2 reduction reactions. The coadsorption reactions of CO2 and H2O are demonstrated to exhibit the strongest attractive interactions on the (010) surface, giving rise to proton transfer to the CO2 molecule, which causes its spontaneous dissociation to form CO and 2OH− species. These results demonstrate that Ta3N5, a narrow bandgap photocatalyst able to absorb visible light, can efficiently activate the CO2 molecule and photocatalytically reduce it with water to produce value-added fuels.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3