A Simple Angle-Resolved Thermal Molecular Beam Reactor: Applied to CO Oxidation on Pt{110}

Author:

Bowker MichaelORCID,Klink Björn UdoORCID,Lass KristianORCID,Bennett Roger A.ORCID

Abstract

We developed a simple form of thermal molecular beam catalytic reactor system which is capable of measuring sticking probabilities and reaction probabilities, together with angle-resolved scattering of molecules and products during catalytic reactions at the surface. This includes very fast determination of the angle dependence of the reaction product flux at steady-state. It was employed to determine the oxidation of CO on Pt{110}-(1 × 2), including individual molecular sticking and scattering. The initial sticking probability of oxygen on Pt{110} shows a small variation between 140 and 750 K surface temperature, from 0.45 to 0.28. The saturation uptake drops from 1.5 ± 0.2 ML at 140 K to 0.6 ML at 300 K and to 0.23 ± 0.02 ML at 750 K. The initial sticking probability of CO at 300 K is 0.80 and decreases to 0.62 at 470 K. Beyond that temperature, it descends steeply down to near zero at 570 K, due to the high desorption rate of CO at that temperature. Kisliuk precursor mobility parameters K were calculated from shape of the sticking curves. For 300 K, a value of 0.11 ± 0.01 was found, which increases to 0.76 ± 0.01 at 470 K, indicating a change from considerable mobility in the precursor state, to more limited mobility before desorption at high temperature. In temperature-programmed CO-O2 reaction experiments, CO2 production was observed to initiate in the temperature region 460–510 K. Using isothermal angle-resolved experiments, the CO2 flux was determined in the [11¯0] plane at temperatures of 470–620 K. Two sharp scattering lobes at positions of ±16° off the surface normal were found, with a high cosine power angle dependence, which were attributed to desorption from the {111}-like microfacets of the 1 × 2 reconstructed surface, with products evolving over a high barrier.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3