Ambient Temperature CO Oxidation Using Palladium–Platinum Bimetallic Catalysts Supported on Tin Oxide/Alumina

Author:

Aldridge James K.,Smith Louise R.,Morgan David J.ORCID,Carley Albert F.,Humphreys Mandy,Clarke Michael J.ORCID,Wormald Patricia,Taylor Stuart H.ORCID,Hutchings Graham J.ORCID

Abstract

A series of Pt-based catalysts were synthesised and investigated for ambient temperature CO oxidation with the aim to increase catalytic activity and improve moisture resistance through support modification. Initially, bimetallic PtPd catalysts supported on alumina were found to exhibit superior catalytic activity compared with their monometallic counterparts for the reaction. Following an investigation into the effect of Pt/Pd ratio, a composition of 0.1% Pt/0.4% Pd was selected for further studies. Following this, SnO2/Al2O3 supports were synthesised from a variety of tin oxide sources. Catalytic activity was improved using sodium stannate and tin oxalate precursors compared with a traditional tin oxide slurry. Catalytic activity versus tin concentration was found to vary significantly across the three precursors, which was subsequently investigated by X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX).

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3