Facile One-Pot Biogenic Synthesis of Cu-Co-Ni Trimetallic Nanoparticles for Enhanced Photocatalytic Dye Degradation

Author:

Alshehri Abdulmohsen Ali,Malik Maqsood Ahmad

Abstract

Biomolecules from plant extracts have gained significant interest in the synthesis of nanoparticles owing to their sustainable properties, cost efficiency, and environmental wellbeing. An eco-friendly and facile method has been developed to prepare Cu-Co-Ni trimetallic nanoparticles with simultaneous bio-reduction of Cu-Co-Ni metal precursors by aqueous extract of oregano (Origanum vulgare) leaves. Dramatic changes in physicochemical properties of trimetallic nanoparticles occur due to synergistic interactions between individual metal precursors, which in turn outclass the properties of corresponding monometallic nanoparticles in various aspects. The as biosynthesized Cu-Co-Ni trimetallic nanoparticles were initially analyzed using ultraviolet (UV)–visible spectroscopy. The morphology, structure, shape, and size of biosynthesized trimetallic nanoparticles were confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) spectroscopy. The elemental analysis was carried out by energy-dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) microscopy was carried out to explain the critical role of the biomolecules in the Origanum vulgare leaf extract as capping and stabilizing agents in the nanoparticle formation. Additionally, simultaneous thermogravimetric analysis (TGA) and differential thermogravimetry (DTG) analysis was also performed to estimate the mass evaluation and rate of the material weight changes. The photocatalytic activity of as biosynthesized trimetallic nanoparticles was investigated towards methylene blue (MB) dye degradation and was found to be an efficient photocatalyst for dye degradation. Kinetic experiments have shown that photocatalytic degradation of MB dye followed pseudo-first-order kinetics. The mechanism of the photodegradation process of biogenic Cu-Co-Ni trimetallic nanoparticles was also addressed.

Funder

King Abdulaziz University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3