Abstract
In order to clarify the reason of often reported low photocatalytic activity of rutile titania compared to that of anatase titania and the sluggish kinetics for oxygen reduction of rutile titania, in this study, faceted copper(I) oxide (Cu2O) particles (FCPs), i.e., cube, cuboctahedron and octahedron, were deposited onto rutile particles by an in-situ wet chemical method, and the co-catalytic action of FCPs was studied in the oxidative decomposition of acetic acid. The oxygen reduction reaction kinetics of bare and FCP-loaded titania samples in photodecomposition of organic compounds were investigated by light-intensity dependence measurement. FCPs serve as the specific sites (sink) which accumulate excited electrons to drive multielectron oxygen reduction reactions, as the counter reaction in photodecomposition of organic compounds by positive holes, which significantly improves the photocatalytic activity of rutile titania particles.
Subject
Physical and Theoretical Chemistry,Catalysis