A Study on Mn-Fe Catalysts Supported on Coal Fly Ash for Low-Temperature Selective Catalytic Reduction of NOX in Flue Gas

Author:

Duan Xiaoxu,Dou Jinxiao,Zhao Yongqi,Khoshk Rish Salman,Yu JianglongORCID

Abstract

A series of Mn0.15Fe0.05/fly-ash catalysts have been synthesized by the co-precipitation method using coal fly ash (FA) as the catalyst carrier. The catalyst showed high catalytic activity for low-temperature selective catalytic reduction (LTSCR) of NO with NH3. The catalytic reaction experiments were carried out using a lab-scale fixed-bed reactor. De-NOx experimental results showed the use of optimum weight ratio of Mn/FA and Fe/FA, resulted in high NH3-SCR (selective catalytic reduction) activity with a broad operating temperature range (130–300 °C) under 50000 h−1. Various characterization methods were used to understand the role of the physicochemical structure of the synthesized catalysts on their De-NOx capability. The scanning electron microscopy, physical adsorption-desorption, and X-ray photoelectron spectroscopy showed the interaction among the MnOx, FeOx, and the substrate increased the surface area, the amount of high valence metal state (Mn4+, Mn3+, and Fe3+), and the surface adsorbed oxygen. Hence, redox cycles (Fe3+ + Mn2+ ↔ Mn3+ + Fe2+; Fe2+ + Mn4+ ↔ Mn3+ + Fe3+) were co-promoted over the catalyst. The balance between the adsorption ability of the reactants and the redox ability can promote the excellent NOx conversion ability of the catalyst at low temperatures. Furthermore, NH3/NO temperature-programmed desorption, NH3/NO- thermo gravimetric-mass spectrometry (NH3/NO-TG-MS), and in-situ DRIFTs (Diffuse Reflectance Infrared Fourier Transform Spectroscopy) results showed the Mn0.15Fe0.05/FA has relatively high adsorption capacity and activation capability of reactants (NO, O2, and NH3) at low temperatures. These results also showed that the Langmuir–Hinshelwood (L–H) reaction mechanism is the main reaction mechanism through which NH3-SCR reactions took place. This work is important for synthesizing an efficient and environmentally-friendly catalyst and demonstrates a promising waste-utilization strategy.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3