Preparation of Immobilized Lipase on Silica Clay as a Potential Biocatalyst on Synthesis of Biodiesel

Author:

Zou Ting,Duan You-dan,Wang Qiao-e,Cheng Hai-ming

Abstract

Biodiesel offers an important alternative to fossil fuel. In this work, Eversa Transform 2.0 lipase was immobilized onto 3-aminopropyltriethoxysilane (APTES) modified silica clay (SC) by glutaraldehyde. The characteristics of the functionalized supports and the immobilized lipase were investigated by FTIR, TEM, BET, and XRD. The results show that the optimal conditions of lipase immobilization are as follows: 2% glutaraldehyde concentration, 15 mg/mL lipase concentration and incubating at 25 °C for 60 min. The immobilized lipase showed a high tolerance to temperature and pH variation in comparison to the free lipase. The immobilized lipase on SC was applied as a biocatalyst for the synthesis of biodiesel from methanol and canola oil. A biodiesel yield of 86% was obtained at a temperature of 45 °C via a three-step methanol addition. A conversion yield of 67% was maintained after reusing the immobilized lipase for five cycles. This work provides a strategy for the preparation of an efficient biocatalyst for the synthesis of biodiesel.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3