Agro-Waste Derived Biomass Impregnated with TiO2 as a Potential Adsorbent for Removal of As(III) from Water

Author:

Poudel Bhoj RajORCID,Aryal Ram Lochan,Bhattarai Sitaram,Koirala Agni Raj,Gautam Surendra Kumar,Ghimire Kedar Nath,Pant Bishweshwar,Park MiraORCID,Paudyal Hari,Pokhrel Megh Raj

Abstract

A novel type of adsorbent, TiO2 impregnated pomegranate peels (PP@TiO2) was successfully synthesized and its efficacy was investigated based on the removal of As(III) from water. The adsorbent was characterized using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectrometer (EDS), X-ray Diffraction (XRD) analysis, and Fourier Transform Infrared (FTIR) Spectroscopy, to evaluate its morphology, elemental analysis, crystallinity, and functional groups, respectively. Batch experiments were conducted on PP@TiO2 for As(III) adsorption to assess the adsorption isotherm, effect of pH, and adsorption kinetics. Characterization data suggested that TiO2 was successfully impregnated on the biomass substrate. The equilibrium data better fitted to the Langmuir isotherm model having a maximum adsorption capacity of 76.92 mg/g and better distribution coefficients (KD) in the order of ~103 mL/g. The highest percentage of adsorption was found at neutral pH. The adsorption kinetics followed the pseudo-2nd-order model. X-ray Photoelectron Spectroscopy (XPS) of the adsorption product exhibited that arsenic was present as As(III) and partially oxidized to As(V). PP@TiO2 can work effectively in the presence of coexisting anions and could be regenerated and reused. Overall, these findings suggested that the as-prepared PP@TiO2 could provide a better and efficient alternative for the synergistic removal of As(III) from water.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3