Synthesis of Ni- and N-Doped Titania Nanotube Arrays for Photocatalytic Hydrogen Production from Glycerol–Water Solutions

Author:

Elysabeth TiurORCID,Agriyfani Dwi Annisa,Ibadurrohman Muhammad,Nurdin Muhammad,Slamet

Abstract

Synthesis of Ni- and N-doped Titania Nanotube Arrays (Ni-N-TiNTAs) was conducted to produce photocatalysts for hydrogen production from a glycerol–water mixture. Ni-N-TiNTAs were synthesized in two steps, namely anodization and chemical reduction. Ti foil was anodized at 50 V for two h in an electrolyte solution containing 0.2% urea as a source of N atoms. Ni doping (at various content of 5%, 10%, 15%, and 20% wt) was performed by one-hour chemical reduction with sodium borohydride as a reducing agent. The photocatalyst was annealed at different temperatures, i.e., 500 °C, 550 °C, and 600 °C under 60 mL/min N2 gas for two h. On the basis of X-ray Diffraction (XRD) patterns, Ni-N-TiNTAs are mostly of anatase crystallite phase when annealed at 500 °C and 550 °C, while that of rutile was observable when calcination was done at 600 °C. The morphology of the photocatalysts was scrutinized by means of Field Emission Scanning Electron Microscopy (FESEM) imaging, which reveals nanotubular structures, with elemental composition measured by Energy Dispersive X-ray (EDX). The bandgap of the photocatalysts was analyzed using Ultraviolet Diffuse Reflectance Spectroscopy (UV DRS), which showed a lower value for the case of Ni-N-TiNTAs as compared to those of TiNTAs and N-TiNTAs. Photocatalytic tests showed that the highest amount of hydrogen produced (ca. 30973 μmol/m2) was obtained in the case of Ni-N-TiNTAs with a Ni content of 10wt%.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3