Testing Metal–Organic Framework Catalysts in a Microreactor for Ethyl Paraoxon Hydrolysis

Author:

Elumalai PalaniORCID,Elrefaei NagatORCID,Chen Wenmiao,Al-Rawashdeh Ma’moun,Madrahimov Sherzod T.

Abstract

We explored the practical advantages and limitations of applying a UiO-66-based metal–organic framework (MOF) catalyst in a flow microreactor demonstrated by the catalytic hydrolysis of ethyl paraoxon, an organophosphorus chemical agent. The influences of the following factors on the reaction yield were investigated: a) catalyst properties such as crystal size (14, 200, and 540 nm), functionality (NH2 group), and particle size, and b) process conditions: temperature (20, 40, and 60 °C), space times, and concentration of the substrate. In addition, long-term catalyst stability was tested with an 18 h continuous run. We found that tableting and sieving is a viable method to obtain MOF particles of a suitable size to be successfully screened under flow conditions in a microreactor. This method was used successfully to study the effects of crystal size, functionality, temperature, reagent concentration, and residence time. Catalyst particles with a sieved fraction between 125 and 250 µm were found to be optimal. A smaller sieved fraction size showed a major limitation due to the very high pressure drop. The low apparent activation energy indicated that internal mass transfer may exist. A dedicated separate study is required to assess the impact of pore diffusion and site accessibility.

Funder

Qatar National Research Fund

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3