Prediction of Reservoir Fracture Parameters Based on the Multi-Layer Perceptron Machine-Learning Method: A Case Study of Ordovician and Cambrian Carbonate Rocks in Nanpu Sag, Bohai Bay Basin, China

Author:

Pei Jianya,Zhang Yunfeng

Abstract

Developing a model that can accurately predict internal fractured reservoirs in the context of the ultra-low physical properties of carbonate rocks by only employing conventional mathematical methods can be very challenging. This process is challenging because the relationship between basic fracture parameters and the logging response in carbonate reservoirs has not been studied, and the traditional method lacks adaptability due to the complex relationship between basic fracture parameters and the logging response. However, data-driven approaches supplemented by machine learning algorithms based on multi-layer perceptrons (MLP) provide a more reliable solution to this challenge. In this paper, a classical fracture parameter evaluation data set is established using fracture porosity, fracture density, fracture length, and fracture width data that can be identified by resistivity and acoustic imaging logging. Another data set can be composed of different types of logs, and it can be used to identify reservoirs. Two different data sets were validated by regression task evaluation indicators in machine learning, and the correlation coefficient R2 is greater than 0.82. This means that the model accuracy of the algorithm can reach 82%. Combined with the comparison results of eight conventional machine learning algorithms, the reliability and application validity of the MLP model are verified. This method’s accuracy is also verified by oil test data, which show that the MLP machine-learning algorithm can effectively simulate the relationship between lithology and fracture development. In addition, it can be used to predict key exploration horizons before drilling. The relationship between lithology and fracture development degree is well-simulated by the MLP machine learning algorithm, which shows that the degree of fracture development is mainly affected by fractures, indicating that the method can be used to predict key exploration horizons before drilling.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference34 articles.

1. Review of fracture identification with well logs and seismic data;Prog. Geophys.,2014

2. Research status and development trend of fractures in carbonate reservoir;Bull. Geol. Sci. Technol.,2021

3. Advances in comprehensive characterization and prediction of reservoir fractures;Prog. Geophys.,2019

4. Integrating borehole image logs with core: A method to enhance subsurface fracture characterization;Am. Assoc. Pet. Geol. Bull.,2018

5. Fracture connectivity from fracture intersections in borehole image logs;Comput. Geosci.,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3