Modelling a DC Electric Railway System and Determining the Optimal Location of Wayside Energy Storage Systems for Enhancing Energy Efficiency and Energy Management

Author:

Alnuman Hammad1ORCID

Affiliation:

1. Department of Electrical Engineering, Jouf University, Sakaka 72388, Saudi Arabia

Abstract

Global demand for fossil fuels is highly increasing, necessitating energy efficiency to be enhanced in transitioning to low-carbon energy systems. Electric railways are highly efficient in reducing the transportation demand for fossil fuels as they are lightweight and their energy demand can be fed by renewable energy resources. Further, the regenerative braking energy of decelerating trains can be fed to accelerating trains and stored in onboard energy storage systems (ESSs) and stationary ESSs. It is fundamental to model electric railways accurately before investigating approaches to enhancing their energy efficiency. However, electric railways are challenging to model as they are nonlinear, resulting from the rectifier substations, overvoltage protection circuits, and the unpredictability and uncertainty of the load according to the train position. There have been few studies that have examined the ESS location’s impact on improving the energy efficiency of electric railways while using specialised simulation tools in electric railways. However, no single study exists that has studied the location impact of stationary ESSs on the energy efficiency of electric railways while the trains are supported by onboard ESSs. Given these goals and challenges, the main objective of this work is to develop a model using commercial software used by industry practitioners. Further, the energy saving is aimed to be maximised using stationary ESSs installed in optimal locations while trains are supported by onboard ESSs. The model includes trains, onboard ESSs, rail tracks, passenger stations, stationary ESSs, and traction power systems involving power lines, connectors, switches, sectioning, and isolators. In this article, a test scenario is presented comprising two trains running on a 20 km with three passenger stations and two substations. The trains and track are modelled in OpenTrack simulation software (Version 1.9) while the power system is modelled in OpenPowerNet simulation software (Version 1.11). The two simulation tools are used in the railway industry and can produce realistic results by taking into account the entire electrical network structure. A stationary ESS is added on the wayside and moved in steps of 1 km to obtain the optimal location before investigating the impact of stationary ESSs on the performance and energy management of onboard ESSs. It is found that the energy saving when installing a stationary ESS at the optimal location is 56.05%, the peak-power reduction of Substation 1 is 4.37%, and the peak-power reduction of Substation 2 is 18.67%.

Funder

Deanship of Graduate Studies and Scientific Research at Jouf University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3