Enhancing Power Supply Flexibility in Renewable Energy Systems with Optimized Energy Dispatch in Coupled CHP, Heat Pump, and Thermal Storage

Author:

Chen Dongwen12,Chu Zheng2

Affiliation:

1. College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310058, China

2. School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 300015, China

Abstract

The use of renewable energy by converting it into heat is an important form of storing energy in a usable form and improving the energy supply flexibility; therefore, the electricity–heating system (EHS) can cope with load fluctuations. However, relevant research is lacking on improving the energy supply limitations by the optimal dispatch of energy flow at the typical EHS, such as the coupled CHP–heat pump–thermal storage system (CCHTS). Based on the study of the energy supply characteristics of the CCHTS for extending the energy supply limitation, this study develops an optimal dispatch method using a heat pump (HP) and the thermal storage (TS) of heating networks to improve the flexibility of the CCHTS and the accommodation capacity of renewable energy. The maximum and minimum energy supply limitation model of the CCHTS and the output power characteristic model are established. Based on the piecewise power supply constraint, the energy flow of the EHS is optimized by using the quadratic programming algorithm. The CCHTS can significantly improve the energy supply flexibility; both coupled combined heat and power (CHP) + HP and coupled CHP + TS can improve the power supply flexibility, but the enhanced effect of CHP + HP is better than that of CHP + TS. An increase of 7.6% in wind power consumption is achieved. The consumption of renewable energy increases by 17.9% in the energy flow optimization results.

Funder

National Key Research and Development Program of China

Zhejiang Engineering Research Center for Edge Intelligence Technology and Equipment

Zhejiang Provincial Department of Education research project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3