Thermodynamic Analysis of the Combustion Process in Hydrogen-Fueled Engines with EGR

Author:

Szwaja Stanislaw1ORCID,Piotrowski Andrzej2ORCID,Szwaja Magdalena1ORCID,Musial Dorota3ORCID

Affiliation:

1. Department of Thermal Machinery, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Dabrowskiego 69, 42-200 Czestochowa, Poland

2. Department of Technology and Automation, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Dabrowskiego 69, 42-200 Czestochowa, Poland

3. Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Dabrowskiego 69, 42-200 Czestochowa, Poland

Abstract

This article presents a novel approach to the analysis of heat release in a hydrogen-fueled internal combustion spark-ignition engine with exhaust gas recirculation (EGR). It also discusses aspects of thermodynamic analysis common to modeling and empirical analysis. This new approach concerns a novel method of calculating the specific heat ratio (cp/cv) and takes into account the reduction in the number of moles during combustion, which is characteristic of hydrogen combustion. This reduction in the number of moles was designated as a molar contraction. This is particularly crucial when calculating the average temperature during combustion. Subsequently, the outcomes of experimental tests, including the heat-release rate, the initial combustion phase (denoted CA0-10) and the main combustion phase (CA10-90), are presented. Furthermore, the impact of exhaust gas recirculation on the combustion process in the engine is also discussed. The efficacy of the proposed measures was validated by analyzing the heat-release rate and calculating the mean combustion temperature in the engine. The application of EGR in the range 0-40% resulted in a notable prolongation of both the initial and main combustion phases, which consequently influenced the mean combustion temperature.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3