Assessment of Immune Status Using Inexpensive Cytokines: A Literature Review and Learning Approaches

Author:

Jamaludeen NoorORCID,Lehmann Juliane,Beyer Christian,Vogel KatrinORCID,Pierau MandyORCID,Brunner-Weinzierl MonikaORCID,Spiliopoulou MyraORCID

Abstract

The emergence of point-of-care (POC) testing has lately been promoted to deliver rapid, reliable medical tests in critical life-threatening situations, especially in resource-limited settings. Recently, POC tests have witnessed further advances due to the technological revolution in smartphones. Smartphones are integrated as reliable readers to the POC results to improve their quantitative detection. This has enabled the use of more complex medical tests by the patient him/herself at home without the need for professional staff and sophisticated equipment. Cytokines, the important immune system biomarkers, are still measured today using the time-consuming Enzyme-Linked Immunosorbent Assay (ELISA), which can only be performed in specially equipped laboratories. Therefore, in this study, we investigate the current development of POC technologies suitable for the home testing of cytokines by conducting a PRISMA literature review. Then, we classify the collected technologies as inexpensive and expensive depending on whether the cytokines can be measured easily at home or not. Additionally, we propose a machine learning-based solution to even increase the efficiency of the cytokine measurement by leveraging the cytokines that can be inexpensively measured to predict the values of the expensive ones. In total, we identify 12 POCs for cytokine quantification. We find that Interleukin 1β (IL-1β), Interleukin 3 (IL-3), Interleukin 6 (IL-6), Interleukin 8 (IL-8) and Tumor necrosis factor (TNF) can be measured with inexpensive POC technology, namely at home. We build machine-learning models to predict the values of other expensive cytokines such as Interferon-gamma (IFN-γ), IL-10, IL-2, IL-17A, IL-17F, IL-4 and IL-5 by relying on the identified inexpensive ones in addition to the age of the individual. We evaluate to what extent the built machine learning models can use the inexpensive cytokines to predict the expensive ones on 351 healthy subjects from the public dataset 10k Immunomes. The models for IFN-γ show high results for the coefficient of determination: R2 = 0.743. The results for IL-5 and IL-4 are also promising, whereas the predictive model of IL-10 achieves only R2 = 0.126. Lastly, the results demonstrate the vital role of TNF and IL-6 in the immune system due to its high importance in the predictions of all the other expensive cytokines.

Funder

European Union

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference63 articles.

1. Smartphone-based clinical diagnostics: Towards democratization of evidence-based health care;Neumann;J. Intern. Med.,2019

2. Point-of-care detection of cytokines in cytokine storm management and beyond: Significance and challenges;Liu;View,2021

3. Tenzer, F. (2022, May 24). Smartphones—Statistiken und Studien. Available online: https://de.statista.com/themen/581/smartphones/#dossierKeyfigures.

4. Point of care diagnostics: Status and future;Gubala;Anal. Chem.,2012

5. A fully integrated electrochemical biosensor platform fabrication process for cytokines detection;Baraket;Biosens. Bioelectron.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3