Enhanced CycleGAN Network with Adaptive Dark Channel Prior for Unpaired Single-Image Dehazing

Author:

Xu Yijun1ORCID,Zhang Hanzhi2,He Fuliang23ORCID,Guo Jiachi1,Wang Zichen1

Affiliation:

1. Westa College, Southwest University, Chongqing 400715, China

2. College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China

3. Chongqing Key Laboratory of Nolinear Circuits and Intelligent Information Processing, Southwest University, Chongqing 400715, China

Abstract

Unpaired single-image dehazing has become a challenging research hotspot due to its wide application in modern transportation, remote sensing, and intelligent surveillance, among other applications. Recently, CycleGAN-based approaches have been popularly adopted in single-image dehazing as the foundations of unpaired unsupervised training. However, there are still deficiencies with these approaches, such as obvious artificial recovery traces and the distortion of image processing results. This paper proposes a novel enhanced CycleGAN network with an adaptive dark channel prior for unpaired single-image dehazing. First, a Wave-Vit semantic segmentation model is utilized to achieve the adaption of the dark channel prior (DCP) to accurately recover the transmittance and atmospheric light. Then, the scattering coefficient derived from both physical calculations and random sampling means is utilized to optimize the rehazing process. Bridged by the atmospheric scattering model, the dehazing/rehazing cycle branches are successfully combined to form an enhanced CycleGAN framework. Finally, experiments are conducted on reference/no-reference datasets. The proposed model achieved an SSIM of 94.9% and a PSNR of 26.95 on the SOTS-outdoor dataset and obtained an SSIM of 84.71% and a PSNR of 22.72 on the O-HAZE dataset. The proposed model significantly outperforms typical existing algorithms in both objective quantitative evaluation and subjective visual effect.

Funder

Venture and Innovation Support Program for Chongqing Overseas Returnees

Chongqing Research Project of the Foal Eagle Program

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3