Transformer-Based Detection for Highly Mobile Coded OFDM Systems

Author:

Wang Leijun1,Zhou Wenbo1,Tong Zian1,Zeng Xianxian12,Zhan Jin1,Li Jiawen1ORCID,Chen Rongjun1

Affiliation:

1. School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou 510665, China

2. Guangdong Provincial Key Laboratory of Big Data Computing, The Chinese University of Hong Kong, Shenzhen 518000, China

Abstract

This paper is concerned with mobile coded orthogonal frequency division multiplexing (OFDM) systems. In the high-speed railway wireless communication system, an equalizer or detector should be used to mitigate the intercarrier interference (ICI) and deliver the soft message to the decoder with the soft demapper. In this paper, a Transformer-based detector/demapper is proposed to improve the error performance of the mobile coded OFDM system. The soft modulated symbol probabilities are computed by the Transformer network, and are then used to calculate the mutual information to allocate the code rate. Then, the network computes the codeword soft bit probabilities, which are delivered to the classical belief propagation (BP) decoder. For comparison, a deep neural network (DNN)-based system is also presented. Numerical results show that the Transformer-based coded OFDM system outperforms both the DNN-based and the conventional system.

Funder

National Natural Science Foundation of China

Special Projects in Key Fields of Ordinary Universities of Guangdong Province

Guangzhou Science and Technology Plan Project under Grant

Open Research Fund from the Guangdong Provincial Key Laboratory of Big Data Computing

Guangdong Province Ordinary Colleges and Universities Young Innovative Talents Project

Research Projects of Guangdong Polytechnic Normal University

Special Project Enterprise Sci-tech Commissioner of Guangdong Province

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3