LED Junction Temperature Measurement: From Steady State to Transient State

Author:

Zhao Xinyu1,Gong Honglin1ORCID,Zhu Lihong1,Zheng Zhenyao1,Lu Yijun1

Affiliation:

1. Department of Electronic Science, Xiamen University, Xiamen 361005, China

Abstract

In this review, we meticulously analyze and consolidate various techniques used for measuring the junction temperature of light-emitting diodes (LEDs) by examining recent advancements in the field as reported in the literature. We initiate our exploration by delineating the evolution of LED technology and underscore the criticality of junction temperature detection. Subsequently, we delve into two key facets of LED junction temperature assessment: steady-state and transient measurements. Beginning with an examination of innovations in steady-state junction temperature detection, we cover a spectrum of approaches ranging from traditional one-dimensional methods to more advanced three-dimensional techniques. These include micro-thermocouple, liquid crystal thermography (LCT), temperature sensitive optical parameters (TSOPs), and infrared (IR) thermography methods. We provide a comprehensive summary of the contributions made by researchers in this domain, while also elucidating the merits and demerits of each method. Transitioning to transient detection, we offer a detailed overview of various techniques such as the improved T3ster method, an enhanced one-dimensional continuous rectangular wave method (CRWM), and thermal reflection imaging. Additionally, we introduce novel methods leveraging high-speed camera technology and reflected light intensity (h-SCRLI), as well as micro high-speed transient imaging based on reflected light (μ_HSTI). Finally, we provide a critical appraisal of the advantages and limitations inherent in several transient detection methods and offer prognostications on future developments in this burgeoning field.

Funder

National Natural Science Foundation of China

Major Science and Technology Project of Fujian Province

Publisher

MDPI AG

Reference110 articles.

1. Fire as an Engineering Tool of Early Modern Humans;Brown;Science,2009

2. Hominid Use of Fire in the Lower and Middle Pleistocene: A Review of the Evidence and Comments and Replies;James;Curr. Anthropol.,1989

3. Pyne, S.J. (2019). Fire: A Brief History, University of Washington Press.

4. Shivelbusch, W. (1989). The Industrialization of Light in the Nineteenth Century, University of California Press.

5. Bowers, B., and Anastas, P. (1998). Lengthening the Day: A History of Lighting Technology, Oxford University Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3