Buildup Factor Computation and Percentage Depth Dose Simulation of Tissue Mimicking Materials for an External Photon Beam (0.15–15 MeV)

Author:

Kadri OmraneORCID,Alfuraih AbdulrahmanORCID

Abstract

Nowadays, the use of tissue mimicking material (TMM) is widespread in both diagnostic and therapeutic medicine, as well as for quality assurance and control. For example, patient exposure evaluation during therapeutic tests has been commonly measured using TMMs. However, only a few materials have been developed for research use at the megavoltage photon energy encountered in medical radiology. In this paper, we extended our previous work to cover the photon energy range of 0.15–15 MeV for five human tissues (adipose, cortical bone, fat, lung and muscle). As a selection criterion for TMM, other than the attenuation coefficient, we introduced the computation of the buildup factor (BUF) for a given couple of energy and depth based on the geometric progression fitting method. Hence, we developed a C++ program able to compute BUF for depths up to 40 mean free path. Moreover, we simulated the percentage depth dose (PDD) of a 6 MV photon beam through each tissue and their equivalent materials using the Geant4 Monte Carlo toolkit (version 10.5). After the comparison of a set of parameters (mass attenuation and mass energy absorption coefficients, BUF, equivalent and effective atomic numbers, electron density, superficial and maximal dose and dose at 10 and 20 cm depths), we found that SB3 (a mixture of epoxy and calcium carbonate) and MS15 (a mixture of epoxy, phenol, polyethylene and aluminum oxide) accurately imitate cortical bone and muscle tissues, respectively. AP6 (a mixture of epoxy, phenol, polyethylene and teflon), glycerol trioleate and LN1 (a mixture of polyurethane and aluminum oxide) are also suitable TMMs for adipose, fat and lung tissues, respectively. Therefore, this work can be useful to physician researchers in dosimetry and radiological diagnosis.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3