Performance of a Prototype Boom Sprayer for Bed-Grown Carrots Based on Canopy Deposition Optimization, Ground Losses and Spray Drift Potential Mitigation in Semi-Field Conditions

Author:

Lamare Aude,Zwertvaegher Ingrid,Nuyttens DavidORCID,Balsari Paolo,Marucco Paolo,Grella MarcoORCID,Caffini Amedeo,Mylonas Nikos,Fountas Spyros,Douzals Jean-PaulORCID

Abstract

The H2020-project OPTIMA concept of smart sprayer relies on several functionalities, including variable nozzle spacing for bed-grown carrots, based on an air-assisted boom sprayer. A prototype boom was designed and evaluated though canopy deposition, ground losses, and spray drift potential. Four bed spray configurations, including various nozzle types, angles, and sizes (XR8004, combination of AIUB8504/AI11004, AI8004, and XR8002) at the most appropriate nozzle spacing and height, were tested and compared to a broadcast application (XR11004). Deposition measurements were performed on carrots in bins at early and full-grown stages with respective target zone width of 1.4 m and 2.2 m. Spray drift potential measurements were performed following ISO 22401, 2015. The spray boom was equipped with an air sleeve providing different air speeds (0, 4, 8 m s−1). The relative depositions at both growth stages showed a significant effect of spray configuration and lowest values were found for the broadcast application. The configurations consisting of air inclusion nozzles generated the lowest drift potential compared to the broadcast application, although not significantly different. Bed spray configurations can thus improve canopy depositions and spray drift potential compared to a conventional broadcast application when the boom height and the nozzle spacing are adjusted to the growth stage.

Funder

European Union

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3