Author:
Baltag Alexandru,Smets Sonja
Abstract
This paper provides an overview of quantum dynamic logics, showing how they have been designed and illustrating how these logics can be applied to verify the correctness of quantum protocols. Similar to the advantages of using dynamic logics to reason about the flow of classical information, the quantum analogues of these logics are tailored to the task of reasoning about the flow of quantum information. We present our logical systems in a modular way, starting with the qualitative logic of quantum measurements and unitary evolutions in single quantum systems, which can already express non-classical effects, e.g., the state-changing interference induced by quantum tests, their non-commutativity, etc. We then move on to logics for compound quantum systems that can capture the non-local features of quantum information: separability, entanglement, correlated measurements, Bell states, etc. We then briefly summarize the logic of quantum probabilities and sketch some applications to quantum protocols.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献