Are Quantitative Errors Reduced with Time-of-Flight Reconstruction When Using Imperfect MR-Based Attenuation Maps for 18F-FDG PET/MR Neuroimaging?

Author:

Lindén JaniORCID,Teuho JarmoORCID,Klén RikuORCID,Teräs Mika

Abstract

We studied whether TOF reduces error propagation from attenuation correction to PET image reconstruction in PET/MR neuroimaging, by using imperfect attenuation maps in a clinical PET/MR system with 525 ps timing resolution. Ten subjects who had undergone 18F-FDG PET neuroimaging were included. Attenuation maps using a single value (0.100 cm−1) with and without air, and a 3-class attenuation map with soft tissue (0.096 cm−1), air and bone (0.151 cm−1) were used. CT-based attenuation correction was used as a reference. Volume-of-interest (VOI) analysis was conducted. Mean bias and standard deviation across the brain was studied. Regional correlations and concordance were evaluated. Statistical testing was conducted. Average bias and standard deviation were slightly reduced in the majority (23–26 out of 35) of the VOI with TOF. Bias was reduced near the cortex, nasal sinuses, and in the mid-brain with TOF. Bland–Altman and regression analysis showed small improvements with TOF. However, the overall effect of TOF to quantitative accuracy was small (3% at maximum) and significant only for two attenuation maps out of three at 525 ps timing resolution. In conclusion, TOF might reduce the quantitative errors due to attenuation correction in PET/MR neuroimaging, but this effect needs to be further investigated on systems with better timing resolution.

Funder

Finnish Cultural Foundation

Alfred Kordelin Foundation

Paulo Foundation

Finnish Cultural Foundation, Varsinais-Suomi Regional Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3