Author:
Gao Xueqing,Wang Ding,Jiang Zhaoliang,Li Xinde,Chen Guopeng
Abstract
The hydrophobic epicuticle wax on fresh leaves of tea tree (Camellia sinensis (L.) 0. Kuntze) leads to the loss of pesticide droplets, reducing efficacy. In this study, four adjuvants were selected to improve the diffusion and adhesion of bifenthrin droplets on the surface of tea leaves at different growth stages. The coupling effect of bifenthrin and adjuvants on the time-dependent and concentration-dependent wettability of droplets was investigated, and the difference in the wettability between bud and leaf was explained by observing the surface morphology. It was found that adjuvants effectively reduced the contact angle of droplets and accelerated the diffusion speed, and the above phenomenon became obvious with the increase in the adjuvant concentration. The wetting promotion of young leaves was more significant due to the reduced epicuticle wax and the greater roughness compared with fresh buds. The surface tension of the pesticide mixture was negatively correlated with the cosine of contact angle after adding the four adjuvants regardless of the growth stage of tea leaves. The contact angle of 0.2% Silwet L-77 decreased to 0° within 10 s, but the extreme wettability led to the decrease in adhesion with the increase in concentration. However, the wettability and adhesion on the surface of tea leaves were simultaneously suitable with more than 0.1% nonionic surfactant. The minimum concentration of the optimal adjuvant proposed in this study can provide an experimental basis and guide more efficient plant protection in tea gardens.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献