Outcome Prediction for SARS-CoV-2 Patients Using Machine Learning Modeling of Clinical, Radiological, and Radiomic Features Derived from Chest CT Images

Author:

Spagnoli Lorenzo,Morrone Maria FrancescaORCID,Giampieri EnricoORCID,Paolani Giulia,Santoro MiriamORCID,Curti NicoORCID,Coppola Francesca,Ciccarese Federica,Vara GiulioORCID,Brandi NicolòORCID,Golfieri RitaORCID,Bartoletti Michele,Viale Pierluigi,Strigari LidiaORCID

Abstract

(1) Background: Chest Computed Tomography (CT) has been proposed as a non-invasive method for confirming the diagnosis of SARS-CoV-2 patients using radiomic features (RFs) and baseline clinical data. The performance of Machine Learning (ML) methods using RFs derived from semi-automatically segmented lungs in chest CT images was investigated regarding the ability to predict the mortality of SARS-CoV-2 patients. (2) Methods: A total of 179 RFs extracted from 436 chest CT images of SARS-CoV-2 patients, and 8 clinical and 6 radiological variables, were used to train and evaluate three ML methods (Least Absolute Shrinkage and Selection Operator [LASSO] regularized regression, Random Forest Classifier [RFC], and the Fully connected Neural Network [FcNN]) for their ability to predict mortality using the Area Under the Curve (AUC) of Receiver Operator characteristic (ROC) Curves. These three groups of variables were used separately and together as input for constructing and comparing the final performance of ML models. (3) Results: All the ML models using only RFs achieved an informative level regarding predictive ability, outperforming radiological assessment, without however reaching the performance obtained with ML based on clinical variables. The LASSO regularized regression and the FcNN performed equally, both being superior to the RFC. (4) Conclusions: Radiomic features based on semi-automatically segmented CT images and ML approaches can aid in identifying patients with a high risk of mortality, allowing a fast, objective, and generalizable method for improving prognostic assessment by providing a second expert opinion that outperforms human evaluation.

Funder

Fondazione Sant'Orsola, Bologna, Italy

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3