Verification of Longitudinal Level Irregularity Suppression Effect at the Structural Boundary by Ballasted Ladder Track

Author:

Watanabe TsutomuORCID,Goto KeiichiORCID,Matsuoka KodaiORCID,Minoura Shintaro

Abstract

The ladder sleeper, which is a type of longitudinal sleeper with long beams in the longitudinal direction of the rail, was developed for the maintenance-labor saving of ballast tracks. In this study, to quantify the load distribution performance of the ladder sleepers at the structural boundary, full-scale model tests were conducted to quantify the vibration transmission reduction effect of the ladder sleepers. Following that, numerical experiments were carried out using a three-dimensional numerical analysis model and it was revealed that the ladder sleeper can reduce the pressure on the sleeper bottom plane by approximately 70% when compared to conventional prestressed concrete sleepers. Furthermore, when laying the ladder sleeper at the structural boundary, it was shown that laying across the structural boundary may be more effective in reducing the pressure on the sleeper bottom plane than laying it in front of the structural boundary. Finally, ladder sleepers were installed on the commercial line and long-term measurements of the longitudinal level irregularity verified the effect of suppressing the longitudinal level irregularity of the ballasted ladder track.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical Investigation of Pre-Stressed Reinforced Concrete Railway Sleeper for High-Speed Application;Infrastructures;2023-02-26

2. Design and Implementation of Track Irregularity Detection System;2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT);2022-12-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3