Abstract
As the channel frequency responses (CFRs) at virtual pilot subcarriers are assumed to be zero, the estimated CFRs will have a leakage effect for discrete Fourier transform (DFT)-based channel estimation in OFDM systems. The CFRs at odd pilot subcarriers and even pilot subcarriers are related if the number of maximum channel delay points is smaller than or equal to half the number of pilots (including virtual pilots). According to this correlation, we propose a low-complexity least-squares (LS) method to estimate the CFRs at virtual even and odd pilot subcarriers, respectively. This will solve the problem of the leakage effect in DFT-based channel estimation. The proposed method does not need to know the statistical properties of the channel or insert extra pilots as with some estimation methods. Furthermore, although this method has less computation than the LS method, both have almost the same channel estimation efficiency in simulation. The channel estimation efficiency of our proposed method is still similar to that of the LS method, even if the number of maximum channel delay points is greater than half the number of pilots. Therefore, the proposed low-complexity method is very suitable for equalizer hardware implementation.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献