Abstract
This paper presents modern copper-matrix composite materials in which volcanic tuff particles are used as a reinforcing phase. The aim of the research was to determine the optimal shares of volcanic tuff additive based on such criteria as softening temperature, relative density, electrical conductivity, and hardness. The properties of the produced and tested composites allowed us to determine the usefulness of this type of material for resistance welding electrodes. To confirm the assumptions made, preliminary investigations of the durability and behavior of electrodes made of the tested material during the processes of welding non-alloy steel sheets were carried out. As a result of the research, it was discovered that the addition of 5% tuff produces the best results in this type of composite. It was found that for the sample with a 5% share of tuff, a high softening point above 600 °C was obtained, high hardness after densification at the level of 62 HRB, and high relative density of approximately 95% and very good conductivity at the level of approximately 45 MS/m. The conducted tests did not show any electrode wear different from the commonly used alloys for resistance welding.
Funder
Polish National Agency for Academic Exchange
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献