Development and Validation of Unmanned Aerial Vehicle Photogrammetry Simulator for Shaded Area Detection

Author:

Kim JisungORCID,Kim Jaekoo,Jeon Kyeongmi,Lee Joonmin,Lee Jaejoon

Abstract

In unmanned aerial vehicle (UAV) photogrammetry, the qualities of three-dimensional (3D) models, including ground sample distance (GSD) and shaded areas, are strongly affected by flight planning. However, during flight planning, the quality of the output cannot be estimated, as it depends on the experience of the operator. Therefore, to reduce the time and cost incurred by repetitive work required to obtain satisfactory quality, a simulator, which can automatically generate a route, acquire images through simulation, and analyze the shaded areas without real flight, has been required. While some simulators have been developed, there are some limitations. Furthermore, evaluating the performance of the simulator is difficult owing to the lack of a validation method. Therefore, to overcome the limitations, target functions, which can plan flights and can detect shaded areas, were set, developed, and validated in this study. As a result, a simulator successfully planned a flight and detected shaded areas. In this way, the simulator was validated to determine the applicability of its performance. Furthermore, the outputs of this study can be applied to not only UAV photogrammetry simulators but also other 3D modeling simulators.

Funder

Ministry of Land, Infrastructure and Transport

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. A UAV-based panoramic oblique photogrammetry (POP) approach using spherical projection

2. Preprint-PhotoTwinVR: An Immersive System for Manipulation, Inspection and Dimension Measurements of the 3D Photogrammetric Models of Real-Life Structures in Virtual Reality;Tadeja;arXiv,2019

3. Autonomous Environment Generator for UAV-Based Simulation

4. Drone-Based Three-Dimensional Photogrammetry and Concave Hull by Slices Algorithm for Apple Tree Volume Mapping

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3