An Analysis of Bubble Migration in Horizontal Thermo-Capillarity Using the VOF Modeling

Author:

Kumar Ranjith,Lin Yu-Chen,Lin Chia-Wei,Lin Ming-ChiehORCID,Hsu Hua-Yi

Abstract

Due to various engineering applications, spontaneous bubble movement on the heated surface has brought huge attention. This work numerically studied the bubble migration driven by the thermo-capillary force under the temperature gradients perpendicular to the gravity direction. This problem is constructed in a two-dimensional domain, and the volume of fluid (VOF) method is adopted to capture the properties of the bubble interface between the vapor and the liquid. One still vapor bubble is initially positioned at the center of the liquid domain, and the temperature gradient is applied to two side walls. The results show that the bubble with a size greater than the capillary length can only oscillate near the initial position even with a larger temperature gradient. The deformation of the bubble such as spheroid and spherical cap can be found around this regime. However, the movement of the bubble with a size smaller than the capillary length is significant under a higher temperature gradient, and it remains a spherical shape. The coefficient of thermo-capillary force (CTh) is defined within this work, and it is found that a larger Weber number (We) accomplishes a larger CTh. This work may provide more precise guidance for smart bubble manipulation and critical heat flux estimation for future nuclear reactor design.

Funder

Ministry of Education of Taiwan (MOE), Ministry of Science and Technology of Taiwan (MOST), National Taipei University of Technology, Hanyang University

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3