Calculation of a Climate Change Vulnerability Index for Nakdong Watersheds Considering Non-Point Pollution Sources

Author:

Kim Jungmin,Kwon Heongak

Abstract

As a response to climate change, South Korea has established its third National Climate Change Adaptation Plan (2021–2025) alongside the local governments’ plans. In this study, proxy variables in 22 sub-watersheds of the Nakdong River, Korea were used to investigate climate exposure, sensitivity, adaptive capacity, and non-point pollution in sub-watersheds, a climate change vulnerability index (CCVI) was established, and the vulnerability of each sub-watershed in the Nakdong River was evaluated. Climate exposure was highest in the Nakdong Estuary sub-watershed (75.5–81.7) and lowest in the Geumhogang sub-watershed (21.1–28.1). Sensitivity was highest (55.7) in the Nakdong Miryang sub-watershed and lowest (19.6) in the Habcheon dam sub-watershed. Adaptive capacity and the resulting CCVI were highest in the Geumhogang sub-watershed (96.2 and 66.2–67.9, respectively) and lowest in the Wicheon sub-watershed (2.61 and 18.5–20.4, respectively), indicating low and high vulnerabilities to climate change, respectively. The study revealed that the high CCVI sensitivity was due to adaptive capacity. These findings can help establish rational climate change response plans for regional water resource management. To assess climate change vulnerability more accurately, regional bias can be prevented by considering various human factors, including resources, budget, and facilities.

Funder

National Institute of Environmental Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. Adaptation Policy Frameworks for Climate Change: Developing Strategies, Policies, and Measures;Burton,2005

2. Climate Change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,2007

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3