Effect of Selected Physical Parameters of Lignite Substrate on Morphological Attributes, Yield and Quality of Cucumber Fruits Fertigated with High EC Nutrient Solution in Hydroponic Cultivation

Author:

Łaźny RadosławORCID,Nowak Jacek S.ORCID,Mirgos Małgorzata,Przybył Jarosław L.ORCID,Niedzińska Monika,Kunka Małgorzata,Gajc-Wolska JaninaORCID,Kowalczyk WaldemarORCID,Kowalczyk Katarzyna

Abstract

Environmentally friendly substrates that are biodegradable may provide an alternative to mineral wool, which is commonly used in hydroponic growing technology. Little is known about the relationship between the physical characteristics of lignite substrate and cucumber yield. The study analyzed the effect of bulk density and water holding capacity of lignite substrate in comparison to mineral wool and EC of nutrient solution on plant morphological parameters, yield and fruit quality of greenhouse cucumber. A positive relation was found between the bulk density of lignite mats and the increase in the number of leaves per week, shoot diameter as well as leaf length and leaf area (calculated as the product of leaf length × width) in cucumbers grown in this medium. Bulk density of lignite growing mats also affected the macro- and micro-nutrient content of cucumber leaves. The physical properties of the substrate and the high EC of the medium had a significant effect on the hardness, color and lutein content of cucumber fruits. The content of biologically active compounds in cucumber fruits depended on the water holding capacity of the medium and the water readily available to plants; these parameters were lower in the lignite medium compared to mineral wool. However, when the lignite substrate was used in hydroponic cucumber cultivation, for a period of 51 days after planting (DAP) there was an increase of more than 23% in the bulk density of the substrate and an increase of nearly 55% in the water readily available compared to the new lignite mats.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3