Abstract
Electric power distribution networks are generally radial in nature, with unidirectional power flows transmitted from the highest voltage levels to the consumption levels. The protection system in these distribution networks is relatively simple and consists mainly of fuses, reclosers (RC) and overcurrent relays (OCRs). The installation of distributed generation (DG) in a network causes coordination problems between these devices, because the power flows are no longer unidirectional and can flow upstream to the substation. For this reason, the work proposed here analyzes the most significant impacts that DG has on the protection devices and proposes an adjustment method for the OCRs based on linear programming (LP) techniques with the aim of improving their response time to the different faults that may occur in the main feeder of the network. The distribution system selected for the study is the IEEE 34 bus system using DIgSILENT 14.1 software for its modeling and Matlab for the adjustment of the overcurrent devices. Results indicate that better coordination between protection devices are achieved if LP is used.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference35 articles.
1. Distributed generation
2. Investigating the impact of embedded generation on relay settings of utilities electrical feeders
3. Power System Protection;Anderson,1998
4. Distributed generation in electricity markets, its impact on distribution system operators, and the role of regulatory and commercial arrangements;Scheepers;Int. J. Distrib. Energy Resour.,2006
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献