Software Defect Prediction Using Stacking Generalization of Optimized Tree-Based Ensembles

Author:

Alazba AmalORCID,Aljamaan HamoudORCID

Abstract

Software defect prediction refers to the automatic identification of defective parts of software through machine learning techniques. Ensemble learning has exhibited excellent prediction outcomes in comparison with individual classifiers. However, most of the previous work utilized ensemble models in the context of software defect prediction with the default hyperparameter values, which are considered suboptimal. In this paper, we investigate the applicability of a stacking ensemble built with fine-tuned tree-based ensembles for defect prediction. We used grid search to optimize the hyperparameters of seven tree-based ensembles: random forest, extra trees, AdaBoost, gradient boosting, histogram-based gradient boosting, XGBoost and CatBoost. Then, a stacking ensemble was built utilizing the fine-tuned tree-based ensembles. The ensembles were evaluated using 21 publicly available defect datasets. Empirical results showed large impacts of hyperparameter optimization on extra trees and random forest ensembles. Moreover, our results demonstrated the superiority of the stacking ensemble over all fine-tuned tree-based ensembles.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3