A Dermoscopic Inspired System for Localization and Malignancy Classification of Melanocytic Lesions

Author:

Pathan Sameena,Ali TanweerORCID,Vincent Shweta,Nanjappa YashwanthORCID,David Rajiv Mohan,Kumar Om PrakashORCID

Abstract

This study aims at developing a clinically oriented automated diagnostic tool for distinguishing malignant melanocytic lesions from benign melanocytic nevi in diverse image databases. Due to the presence of artifacts, smooth lesion boundaries, and subtlety in diagnostic features, the accuracy of such systems gets hampered. Thus, the proposed framework improves the accuracy of melanoma detection by combining the clinical aspects of dermoscopy. Two methods have been adopted for achieving the aforementioned objective. Firstly, artifact removal and lesion localization are performed. In the second step, various clinically significant features such as shape, color, texture, and pigment network are detected. Features are further reduced by checking their individual significance (i.e., hypothesis testing). These reduced feature vectors are then classified using SVM classifier. Features specific to the domain have been used for this design as opposed to features of the abstract images. The domain knowledge of an expert gets enhanced by this methodology. The proposed approach is implemented on a multi-source dataset (PH2 + ISBI 2016 and 2017) of 515 annotated images, thereby resulting in sensitivity, specificity and accuracy of 83.8%, 88.3%, and 86%, respectively. The experimental results are promising, and can be applied to detect asymmetry, pigment network, colors, and texture of the lesions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3