Automated Classification of Left Ventricular Hypertrophy on Cardiac MRI

Author:

Budai AdamORCID,Suhai Ferenc Imre,Csorba Kristof,Dohy ZsofiaORCID,Szabo Liliana,Merkely Bela,Vago Hajnalka

Abstract

Left ventricular hypertrophy is an independent predictor of coronary artery disease, stroke, and heart failure. Our aim was to detect LVH cardiac magnetic resonance (CMR) scans with automatic methods. We developed an ensemble model based on a three-dimensional version of ResNet. The input of the network included short-axis and long-axis images. We also introduced a standardization methodology to unify the input images for noise reduction. The output of the network is the decision whether the patient has hypertrophy or not. We included 428 patients (mean age: 49 ± 18 years, 262 males) with LVH (346 hypertrophic cardiomyopathy, 45 cardiac amyloidosis, 11 Anderson–Fabry disease, 16 endomyocardial fibrosis, 10 aortic stenosis). Our control group consisted of 234 healthy subjects (mean age: 35 ± 15 years; 126 males) without any known cardiovascular diseases. The developed machine-learning-based model achieved a 92% F1-score and 97% recall on the hold-out dataset, which is comparable to the medical experts. Experiments showed that the standardization method was able to significantly boost the performance of the algorithm. The algorithm could improve the diagnostic accuracy, and it could open a new door to AI applications in CMR.

Funder

National Research, Development and Innovation Office of Hungary

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-Based Aortic Stenosis Classification in MRI Scans;Electronics;2023-11-30

2. Segmentation of heart wall muscles and detection of hypertrophic cardiomyopathy from 2D echo images using U- Nets;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

3. Detection of Hypertrophic Cardiomyopathy from Echocardiography: A Survey of Current Approaches;2023 3rd International Conference on Pervasive Computing and Social Networking (ICPCSN);2023-06

4. Biomedical Imaging Technologies for Cardiovascular Disease;Applied Sciences;2023-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3