Deformation and Control of Super-Large-Diameter Shield in the Upper-Soft and Lower-Hard Ground Crossing the Embankment

Author:

You Shuang,Sun Jianan

Abstract

Compared with the small diameter and the single stratum shield tunnel, the surface subsidence is much greater when the large-diameter shield passes through the upper-soft and lower-hard stratum. In this case, it is particularly important to control the deformation of the embankment when the large-diameter shield passes underneath the embankment. Taking a tunnel project underneath the north embankment in Zhuhai as an engineering example, this paper investigates the deformation characteristics and safety control measures of a super-large-diameter (i.e., 15.80 m) shield tunnel underneath the embankment under complex stratum conditions in upper-soft and lower-hard strata, using on-site monitoring and three-dimensional numerical simulations. The results of the numerical simulation show that grouting can effectively reduce the settlement of the embankment. Grouting is applied to practical engineering, and the monitoring data are in agreement with the numerical simulation results. The surface subsidence of the embankment gradually increases as the shield tail leaves the monitoring section and finally stabilizes. After the shield machine has passed through the embankment, the horizontal deformation troughs on the embankment’s surface conform to the Gaussian normal distribution. The maximum settlement occurs in the area directly above the central axis of the tunnel. The deformation trough covers an area about four times the diameter of the tunnel on both sides of its center line.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference17 articles.

1. Risk Analysis and Control Measures for Slurry Shield Tunneling Diagonally under an Urban River Embankment

2. Difficulties and countermeasures in design and construction of shield tunnels in upper-soft and lower-hard stratum;Zhang;Tunn. Constr.,2019

3. Analysis of ground surface settlement induced by the construction of a large-diameter shallow-buried twin-tunnel in soft ground

4. Application and prospect of hard rock TBM for deep roadway construction in coal mines

5. Study on ultimate supporting force of tunnel excavation face and deformation law in upper-soft lower-hard stratum;Yan;Yangtze River,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3