Low Temperature Plasma Strategies for Xylella fastidiosa Inactivation

Author:

Ambrico Paolo FrancescoORCID,Zicca Stefania,Ambrico Marianna,Rotondo Palma RosaORCID,De Stradis AngeloORCID,Dilecce Giorgio,Saponari Maria,Boscia Donato,Saldarelli PasqualeORCID

Abstract

The quarantine bacterium Xylella fastidiosa was first detected in Salento (Apulia, Italy) in 2013 and caused severe symptoms in olives, leading to plant death. The disease, named Olive Quick Decline Syndrome (OQDS), is caused by the strain “De Donno” ST53 of the subspecies pauca of this bacterium (XfDD), which is spread by the insect Philaenus spumarius. The epidemic poses a serious threat to the agricultural economy and the landscape, as X. fastidiosa infects several plant species and there is yet no recognized solution. Research on OQDS is focused on finding strategies to control its spread or mitigate its symptoms. As a perspective solution, we investigated the efficacy of the low-temperature plasma and plasma-activated water to kill bacterial cells. Experiments were conducted in vitro to test the biocidal effect of the direct application of a Surface Dielectric Barrier Discharge (SDBD) plasma on bacteria cells and Plasma Activated Water (PAW). PAW activity was tested as a possible biocidal agent that can move freely in the xylem network paving the way to test the strategy on infected plants. The results showed a high decontamination rate even for cells of XfDD embedded in biofilms grown on solid media and complete inactivation in liquid culture medium.

Funder

Ministry of Economic Development

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3