Photogrammetric Precise Surveying Based on the Adjusted 3D Control Linear Network Deployed on a Measured Object

Author:

Karsznia KrzysztofORCID,Osada EdwardORCID

Abstract

In surveying engineering tasks, close-range photogrammetry belongs to leading technology by considering different aspects like the achievable accuracy, availability of hardware and software, accessibility to measured objects, or the economy. Hence, constant studies on photogrammetric data processing are desirable. Especially in industrial applications, the control points for close-range photogrammetry are usually measured using total stations. In the case of smaller items, more precise positions of control points can be obtained by deploying and adjusting a three-dimensional linear network located on the object. This article analyzes the accuracy of the proposed method based on the measurement of the linear network using a professional tape with a precision of ±1 mm. It is shown what accuracy of object feature dimensioning can be obtained based on the proposed innovative network method for photo-point measurement, using only the minimum required number of two stereo-images. The photogrammetric 3D model derived from them and captured with a non-metric camera is characterized by the highest possible precision, which qualifies the presented approach to accurate measurements used in the surveying engineering. The authors prove that the distance between two randomly optional points derived from the 3D model of a dimensioned object is equal to the actual distance measured directly on it with one-millimeter accuracy.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

1. Quick solutions particularly in close range photogrammetry;Pozzoli;Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.,2012

2. A Direct Georeferencing Method for Terrestrial Laser Scanning Using GNSS Data and the Vertical Deflection from Global Earth Gravity Models

3. Image-based 3D Modelling: A Review

4. Close Range Photogrammetry and 3D Imaging;Luhmann,2013

5. An Introduction to 3D Computer Vision, Techniques and Algorithms;Cyganek,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3