The Effect of Interface Damage between Slab and Mortar Layer on the Dynamic Performances of Vehicle and Track Systems under the High Frequency Train Loads

Author:

Xin Xin,Ren Zunsong

Abstract

To investigate the influences of through-transverse mortar disengagement with different lengths and heights on the dynamic responses of vehicle and track systems under the high frequency train loads, a coupled rigid vehicle–flexible track multi-body dynamics (MBD) model with mortar disengagement was established in SIMPACK platforms with the help of ANSYS software. The results indicate that when the mortar disengagement length is no more than 1 m, the responses of vehicle and track systems are hardly influenced by mortar disengagement with an increase rate of no more than 10% except for the slab displacement. When LMD reaches 1.5 m, the maximum slab displacement exceeds the safety limit of 0.5 mm. The vertical wheel–rail contact force and the rail displacement exceed the safety limit with the mortar disengagement length of 2 m and the mortar disengagement height of 1.5 mm. The most increase rates induced by mortar disengagement are 190% and 272% with regards to the slab displacement and the longitudinal tension stress of slab, respectively, which is significantly detrimental to the service life of slab. The proposed approach has the potential to preliminarily determine the critical mortar disengagement size, which is conductive to relieving the pressure of track maintenance while ensuring the service life of track structures and the operation safety and riding comfort of the vehicle.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3