Forecasting Fine-Grained Air Quality for Locations without Monitoring Stations Based on a Hybrid Predictor with Spatial-Temporal Attention Based Network

Author:

Hsieh Hsun-PingORCID,Wu Su,Ko Ching-ChungORCID,Shei Chris,Yao Zheng-Ting,Chen Yu-Wen

Abstract

Air pollution in cities is a severe and worrying problem because it causes threats to economic development and health. Furthermore, with the development of industry and technology, rapid population growth, and the massive expansion of cities, the total amount of pollution emissions continue to increase. Hence, observing and predicting the air quality index (AQI), which measures fatal pollutants to humans, has become more and more critical in recent years. However, there are insufficient air quality monitoring stations for AQI observation because the construction and maintenance costs are too high. In addition, finding an available and suitable place for monitoring stations in cities with high population density is difficult. This study proposes a spatial-temporal model to predict the long-term AQI in a city without monitoring stations. Our model calculates the spatial-temporal correlation between station and region using an attention mechanism and leverages the distance information between all existing monitoring stations and target regions to enhance the effectiveness of the attention structure. Furthermore, we design a hybrid predictor that can effectively combine the time-dependent and time-independent predictors using the dynamic weighted sum. Finally, the experimental results show that the proposed model outperforms all the baseline models. In addition, the ablation study confirms the effectiveness of the proposed structures.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. State-of-art in modelling particulate matter (PM) concentration: a scoping review of aims and methods;Environment, Development and Sustainability;2024-04-02

2. Forecasting Dengue Fever Risk in Regions without Sensors Using Multi-View Graph Fusion Recurrent Neural Network;Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems;2023-11-13

3. SRAI;Proceedings of the 6th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery;2023-11-13

4. Forecasting of ozone concentrations using the Neural Prophet model: application to the Tunisian case;Euro-Mediterranean Journal for Environmental Integration;2023-10-12

5. ASTGC: Attention-based Spatio-temporal Fusion Graph Convolution Model for Fine-grained Air Quality Analysis;Air Quality, Atmosphere & Health;2023-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3