Fixed-Bed Adsorption of Phenol onto Microporous Activated Carbon Set from Rice Husk Using Chemical Activation

Author:

Daffalla Samah B.ORCID,Mukhtar Hilmi,Shaharun Maizatul S.,Hassaballa Abdalhaleem A.ORCID

Abstract

In the course of this research, the potential of activated carbon from rice husk was examined as being a phenol removal medium from an aqueous solution in a fixed-bed adsorption column. The activated carbon was characterized through FESEM (Field-Emission Scanning Electron Microscopy) and BET (Brunauer–Emmett–Teller) surface area. According to the FESEM micrograph and BET surface area, RHAC (rice husk activated carbon) had a porous structure with a large surface area of 587 m2·g−1 and mean diameter of pores of 2.06 nm. The concentration effects on the influent phenol (100–2000 mg·L−1), rate of flow (5–10 mL·min−1), and bed depth (8.5–15.3 cm) were examined. It was found that the capacity of bed adsorption increased according to the increase in the influent concentration and bed depth. However, the capacity of bed adsorption decreased according to the increase in the feed flow rate. The regeneration of activated carbon column using 0.1 M sodium hydroxide was found to be effective with a 75% regeneration efficiency after three regeneration cycles. Data on adsorption were observed to be in line with many well-established models (i.e., Yoon–Nelson and Adams–Bohart, as well as bed depth service time models).

Funder

Annual Funding track by the Deanship of Scientific Research. Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3