Abstract
Project SHELTER, Structural Hyper-resisting Element for Life-Threatening Earthquake Risk, aims at developing a strong and stiff functional unit to protect its occupants in case of severe earthquakes that lead to structural collapse. In case of collapse, these units will suffer impacts, particularly if they are installed in upper floors. To avoid severe injuries or death of occupants caused by collapse, safety chairs were designed, provided with shock-absorber systems and auxiliary retaining devices, to keep the occupants properly seated and safe. Three downfall scenarios were evaluated, consisting of vertical and tilted positions. A comprehensive numerical model to represent the human body was developed, mainly focused on chest behaviour and considering the anatomic limits of the vertebral spine. The mechanical ability of the safety chair to ensure the occupants’ safety was evaluated under these harsh conditions. Experimental downfall-and-impact tests will later be performed on shelter units, with crash-test dummies seated on the safety chairs for final validation.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献