Abstract
A new Doppler radar using millimeter-waves in the Ka-band, named the “dual-comb Doppler reflectometer”, has been developed to measure the turbulence intensity and its velocity in high-temperature plasmas. For the realization of a fusion power generation, it is very important to know the spatial structure of turbulence, which is the cause of plasma confinement degradation. As a non-invasive and high spatial resolution measurement method for this purpose, we apply a multi-frequency Doppler radar especially with simultaneous multi-point measurement using a frequency comb. The newly developed method of synchronizing two frequency combs allows a lower intermediate frequency (IF) than the previously developed frequency comb radar, lowering the bandwidth of the data acquisition system and enabling low-cost, long-duration plasma measurements. In the current dual-comb radar system, IF bandwidth is less than 0.5 GHz; it used to be 8 GHz for the entire Ka-band probing. We applied this system to the high-temperature plasma experimental device, the Large Helical Device (LHD), and, to demonstrate this system, verified that it shows time variation similar to that of the existing Doppler radar measurements.
Funder
KAKENHI
NIFS Collaboration Research Program
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献