Failure Pressure Prediction of Medium to High Toughness Pipe with Circumferential Interacting Corrosion Defects Subjected to Combined Loadings Using Artificial Neural Network

Author:

Vijaya Kumar Suria DeviORCID,Lo MichaelORCID,Karuppanan Saravanan,Ovinis MarkORCID

Abstract

Assessment of a corroded pipe is crucial to determine when it must be repaired or replaced. However, the conventional corrosion assessment codes for the failure pressure predictions of corroded pipes with circumferentially aligned interacting defects are conservative (underestimations of more than 40%), resulting in premature repair or replacements of pipelines. Alternatively, numerical approaches may be used, but they are time consuming and computationally expensive. In this study, an analytical equation based on finite element analysis for the failure pressure prediction of API 5L X52, X65, and X80 corroded pipes with circumferentially aligned interacting corrosion defects subjected to combined loadings is proposed. An artificial neural network trained with failure pressure obtained from the finite element analysis of the three pipe grades for varied defect spacings, depths and lengths, and axial compressive stress were used to develop the equation. Subsequently, a parametric study on the effects of these parameters on the failure pressure of a corroded pipe with circumferential-interacting defects was conducted using the equation to determine the correlation between the defect geometries and failure pressure of the pipe. The new equations predicted failure pressures for these pipe grades with an R2 value of 0.99 and an error range of −9.92% to 0.98% for normalised defect spacings of 0.00 to 3.00, normalised effective defect lengths of 0.00 to 2.95, normalised effective defect depths of 0.00 to 0.80, and normalised axial compressive stress of 0.00 to 0.60.

Funder

Yayasan Universiti Teknologi PETRONAS

Ministry of Higher Education, Malaysia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3