Research on the Centrifugal Driving of a Water-in-Oil Droplet in a Microfluidic Chip with Spiral Microchannel

Author:

Xie Zhongqiang,Cai Yongchao,Wu Jiahao,Xian Zhaokun,You HuiORCID

Abstract

Combining the advantages of droplet-based microfluidics and centrifugal driving, a method for centrifugally driving W/O droplets with spiral microchannel is proposed in this paper. A physical model of droplet flow was established to study the flow characteristics of the W/O droplet in the spiral microchannel driven by centrifugal force, and kinematic analysis was performed based on the rigid body assumption. Then, the theoretical formula of droplet flow rate was obtained. The theoretical value was compared with the actual value measured in the experiments. The result shows that the trend of the theoretical value is consistent with the measured value, and the theoretical value is slightly larger than the experimentally measured value caused by deformation. Moreover, it is found that the mode of centrifugal driving with spiral microchannel has better flow stability than the traditional centrifugal driving structure. A larger regulation speed range can be achieved by adjusting the motor speed without using expensive equipment or precise instruments. This study can provide a basis and theoretical reference for the development of droplet-based centrifugal microfluidic chips.

Funder

Guangxi Bagui Scholars Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3