Dimensional Reduction-Based Moment Model for Probabilistic Slope Stability Analysis

Author:

Wang Meng,He Ziguang,Zhao Hongbo

Abstract

Uncertainty is an inevitable factor that influences the function analysis, design, and safe operation in engineering systems. Due to the complexity property and unclear failure mechanism, uncertainty is an intrinsic property of slope engineering. Hence, stability analysis and design cannot meet the demands of slope engineering based on the traditional deterministic method, which cannot deal with uncertainty. In this study, a practical reliability approach was developed to consider the uncertainty factor in slope stability analysis by combining the multiplicative dimensional reduction method (MDRM) and first-order second moment (FOSM). MDRM was used to approximate the complex, nonlinear, high-dimensional, and implicit limit state function. The statistical moment of safety factor was estimated based on the moment method using MDRM. FOSM is adopted to compute the reliability index based on the statistical moment of the safety factor. The proposed method was illustrated and verified by an infinite slope with an analytical solution. The reliability index and failure probability were compared with Monte Carlo simulations (MCS) in various cases. Then, it was applied to a slope based on numerical solutions. The results show that the proposed method is feasible and effective for probabilistic slope stability analysis. The reliability index obtained from the proposed method shows high consensus with the traditional response surface method (RSM). It shows that the proposed method is effective, efficient, and accurate. MDRM provides a practical, simple, and efficient probabilistic slope stability analysis approach.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Soft Computing Techniques for Slope Stability Analysis;Transportation Infrastructure Geotechnology;2024-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3