Abstract
In the present study, field tests were performed using low-resistivity materials (LRMs) in different grounding system (GS) configurations to reduce the grounding resistance (GR) and assess the variation in the effectiveness of the LRMs with increases in the complexity of the GS design. Different configurations were implemented in soils with different resistivity values to determine the variation in the effectiveness of each LRM design with increases in the soil resistivity. Lastly, the percentage decrease in the GR was assessed as a function of the increase in the complexity of the GS design and the variation in the soil resistivity. The results of this study provide a useful guide for engineers and researchers who study, design, and build innovative and effective GSs by applying improved compounds for safe electrical installations.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献