Research on an ID-PCA Early Fault Detection Method for Rolling Bearings

Author:

Guo JinORCID,Liu Yefeng,Li Kangju,Liu Qiang

Abstract

Since the rolling bearing is complex during the signal acquisition process, there is a certain loss during the process of collecting the vibration signal. This has led to the weakness of the early fault characteristics of the rolling bearing, affecting the accuracy of the rolling bearing fault feature extraction. In response to the above problems, an early fault detection method based on the Improved Deep Principal Component Analysis (ID-PCA) is proposed. The proposed method uses the time-series characteristic information of the vibration signal to establish a model, which solves the problem that the principal component analysis method cannot detect the vibration signal directly. Through the deep decomposition theorem, a multi-layer data processing model is established to fully mine the weak fault features in the vibration signal. It can solve the problem of inaccurate early fault detection results due to weak fault feature information. The reliability of this method is proved theoretically through sensitivity analysis. Finally, through experimental simulation, the accuracy and feasibility of this method are proved from the perspective of practice.

Funder

National Science Foundation of China under Grants

Liaoning Province Natural Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3