Abstract
The use of carbon fiber reinforced plastic (CFRP) is increasing in engineering applications such as aerospace, automobiles, defense, and construction. Excellent strength-to-weight ratio, high impact toughness, and corrosion resistance make CFRP highly suitable for aerospace applications. Curing temperature, curing time, and autoclave pressure are among the most important curing parameters affecting the properties of CFRP. Tensile strength, impact toughness, and hardness of CFRP were selected as desirable properties for optimization. A 23 full factorial design of experiment (DOE) was employed by varying curing temperature (120 and 140 °C), curing time (90 and 120 min), and autoclave pressure (3 and 7 bar) while keeping the number of experiments to a minimum level. The cured samples were subjected to tensile strength, impact toughness, and hardness tests at room temperature as per relevant ASTM standards. Analysis of variance (ANOVA) was used, and it was found that tensile strength, impact toughness, and hardness were influenced most significantly by temperature and time. The maximum tensile strength and hardness were achieved for curing cycle parameters of 140 °C, 120 min, and 7 bar, and impact toughness was maximized for 140 °C, 120 min, and 3 bar. A concept of composite desirability function was used to achieve simultaneous optimization of conflicting tensile strength and impact toughness properties for the specific application of aircraft skin.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献