Numerical Investigation on the Flow-Induced Vibration Characteristics of Fire Turbopump with the Turbine-Pump Structure

Author:

Yuan Ye,Jin Rong,Tang Lingdi

Abstract

The vibration characteristics induced by radial hydraulic force on the fire turbopump have been investigated by numerical simulations in this paper. The numerical model was validated with corresponding experimental measurements. The turbopump has the special structure with two hydraulic machineries of a turbine and a pump. The hydraulic force characteristics on the separate turbine and the separate pump were first studied. There is one period in the force variation for one cycle of impeller rotation, and pressure fluctuations are observed in 15 times and 30 times the shaft rotating frequency of the turbine. Meanwhile, there are five periods in the force fluctuation in one full working cycle, and obvious fluctuation amplitudes on 5 times, 10 times and 15 times the shaft rotating frequency of the pump are found. Then, the coupled effect of force fluctuations on the turbine and pump was explored. For the turbopump, the periodicity of force fluctuation in the time domain and force characteristics in the frequency domain are dominated by pump structure. The hydraulic force fluctuation on the impeller is enhanced, while that on the housing is damped by counteracting the forces between turbine suction and pump volute.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference22 articles.

1. Research state of water turbine pump;Weng;Water Turbine Pump.,1994

2. Turbopump;Fujian RI,1978

3. Overview for Water turbine pump industry;Liang;Water Turbine Pump.,2000

4. Research on Design of High-Efficiency Fire Turbopump Supplying Water from Low-Level Water Resources

5. Research on Unsteady Pressure Fluctuation within the whole Flow Passage of a Fire Turbopump

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3